Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract We use 23 yr of astrometric and radial velocity data on the orbit of the star S0-2 to constrain a hypothetical intermediate-mass black hole orbiting the massive black hole Sgr A* at the Galactic center. The data place upper limits on variations of the orientation of the stellar orbit at levels between 0.°02 and 0.°07 per year. We use a combination of analytic estimates and full numerical integrations of the orbit of S0-2 in the presence of a black hole binary. For a companion intermediate-mass black hole outside the orbit of S0-2 (1020 au), we find that a companion black hole with massmcbetween 103and 105M⊙is excluded, with a boundary behaving as . For a companion withac< 1020 au, a black hole with mass between 103and 105M⊙is excluded, with . These bounds arise from quadrupolar perturbations of the orbit of S0-2. Significantly stronger bounds on an inner companion arise from the fact that the location of S0-2 is measured relative to the bright emission of Sgr A* and that separation is perturbed by the “wobble” of Sgr A* about the center of mass between it and the companion. The result is a set of bounds as small as 400M⊙at 200 au; the numerical simulations suggest a bound from these effects varying as . We compare and contrast our results with those from a recent analysis by the GRAVITY collaboration.more » « less
- 
            Abstract Infrared observations of stellar orbits about Sgr A* probe the mass distribution in the inner parsec of the Galaxy and provide definitive evidence for the existence of a massive black hole. However, the infrared astrometry is relative and is tied to the radio emission from Sgr A* using stellar SiO masers that coincide with infrared-bright stars. To support and improve this two-step astrometry, we present new astrometric observations of 15 stellar SiO masers within 2 pc of Sgr A*. Combined with legacy observations spanning 25.8 yr, we reanalyze the relative offsets of these masers from Sgr A* and measure positions and proper motions that are significantly improved compared to the previously published reference frame. Maser positions are corrected for epoch-specific differential aberration, precession, nutation, and solar gravitational deflection. Omitting the supergiant IRS 7, the mean position uncertainties are 0.46 mas and 0.84 mas in R.A. and decl., and the mean proper motion uncertainties are 0.07 mas yr−1and 0.12 mas yr−1, respectively. At a distance of 8.2 kpc, these correspond to position uncertainties of 3.7 and 6.9 au and proper motion uncertainties of 2.7 and 4.6 km s−1. The reference frame stability, the uncertainty in the variance-weighted mean proper motion of the maser ensemble, is 8μas yr−1(0.30 km s−1) in R.A. and 11μas yr−1(0.44 km s−1) in decl., which represents a 2.3-fold improvement over previous work and a new benchmark for the maser-based reference frame.more » « less
- 
            Schmidt, Dirk; Vernet, Elise; Jackson, Kathryn J (Ed.)The first scientific observations with adaptive optics (AO) at W. M. Keck Observatory (WMKO) began in 1999. Through 2023, over 1200 refereed science papers have been published using data from the WMKO AO systems. The scientific competitiveness of AO at WMKO has been maintained through a continuous series of AO and instrument upgrades and additions. This tradition continues with AO being a centerpiece of WMKO’s scientific strategic plan for 2035. We will provide an overview of the current and planned AO projects from the context of this strategic plan. The current projects include implementation of new real-time controllers, the KAPA laser tomography system and the HAKA high-order deformable mirror system, the development of multiple advanced wavefront sensing and control techniques, the ORCAS space-based guide star project, and three new AO science instruments. We will also summarize steps toward the future strategic directions which are centered on ground-layer, visible and high-contrast AO.more » « less
- 
            Abstract We present the first estimate of the intrinsic binary fraction of young stars across the central ≈0.4 pc surrounding the supermassive black hole (SMBH) at the Milky Way Galactic center (GC). This experiment searched for photometric variability in 102 spectroscopically confirmed young stars, using 119 nights of 10″ wide adaptive optics imaging observations taken at W. M. Keck Observatory over 16 yr in the -[2.1μm] andH-[1.6μm] bands. We photometrically detected three binary stars, all of which are situated more than 1″ (0.04 pc) from the SMBH and one of which, S2-36, is newly reported here with spectroscopic confirmation. All are contact binaries or have photometric variability originating from stellar irradiation. To convert the observed binary fraction into an estimate of the underlying binary fraction, we determined the experimental sensitivity through detailed light-curve simulations, incorporating photometric effects of eclipses, irradiation, and tidal distortion in binaries. The simulations assumed a population of young binaries, with stellar ages (4 Myr) and masses matched to the most probable values measured for the GC young star population, and underlying binary system parameters (periods, mass ratios, and eccentricities) similar to those of local massive stars. As might be expected, our experimental sensitivity decreases for eclipses narrower in phase. The detections and simulations imply that the young, massive stars in the GC have a stellar binary fraction ≥71% (68% confidence), or ≥42% (95% confidence). This inferred GC young star binary fraction is consistent with that typically seen in young stellar populations in the solar neighborhood. Furthermore, our measured binary fraction is significantly higher than that recently reported by Chu et al. based on radial velocity measurements for stars ≲1″ of the SMBH. Constrained with these two studies, the probability that the same underlying young star binary fraction extends across the entire region is <1.4%. This tension provides support for a radial dependence of the binary star fraction, and therefore, for the dynamical predictions of binary merger and evaporation events close to the SMBH.more » « less
- 
            Abstract The astrometric precision and accuracy of an imaging camera is often limited by geometric optical distortions. These must be calibrated and removed to measure precise proper motions, orbits, and gravitationally lensed positions of interesting astronomical objects. Here, we derive a distortion solution for the OSIRIS Imager fed by the Keck I adaptive optics system at the W. M. Keck Observatory. The distortion solution was derived from images of the dense globular clusters M15 and M92 taken with OSIRIS in 2020 and 2021. The set of 403 starlists, each containing ∼1000 stars, were compared to reference Hubble catalogs to measure the distortion-induced positional differences. OSIRIS was opened and optically realigned in 2020 November and the distortion solutions before and after the opening show slight differences at the ∼20 mas level. We find that the OSIRIS distortion closely matches the designed optical model: large, reaching 20 pixels at the corners, but mostly low order, with the majority of the distortion in the 2nd-order mode. After applying the new distortion correction, we find a median residual of [x, y] = [0.052, 0.056] pixels ([0.51, 0.56] mas) for the 2020 solution, and [x, y] = [0.081, 0.071] pixels ([0.80, 0.71] mas) for the 2021 solution. Comparison between NIRC2 images and OSIRIS images of the Galactic center show that the mean astrometric difference between the two instruments reduces from 10.7 standard deviations to 1.7 standard deviations when the OSIRIS distortion solution is applied. The distortion model is included in the Keck AO Imaging data-reduction pipeline and is available for use on OSIRIS data.more » « less
- 
            Abstract The eccentricity of a substellar companion is an important tracer of its formation history. Directly imaged companions often present poorly constrained eccentricities. A recently developed prior framework for orbit fitting called “observable-based priors” has the advantage of improving biases in derived orbit parameters for objects with minimal phase coverage, which is the case for the majority of directly imaged companions. We use observable-based priors to fit the orbits of 21 exoplanets and brown dwarfs in an effort to obtain the eccentricity distributions with minimized biases. We present the objects’ individual posteriors compared to their previously derived distributions, showing in many cases a shift toward lower eccentricities. We analyze the companions’ eccentricity distribution at a population level, and compare this to the distributions obtained with the traditional uniform priors. We fit a Beta distribution to our posteriors using observable-based priors, obtaining shape parametersα= andβ= . This represents an approximately flat distribution of eccentricities. The derivedαandβparameters are consistent with the values obtained using uniform priors, though uniform priors lead to a tail at high eccentricities. We find that separating the population into high- and low-mass companions yields different distributions depending on the classification of intermediate-mass objects. We also determine via simulation that the minimal orbit coverage needed to give meaningful posteriors under the assumptions made for directly imaged planets is ≈15% of the inferred period of the orbit.more » « less
- 
            Context.The Galactic Center black hole and the nuclear star cluster are surrounded by a clumpy ring of gas and dust, the circumnuclear disk (CND), that rotates about them at a standoff distance of ≃1.5 pc. The mass and density of individual clumps in the CND are disputed. Aims.We seek to use H2to characterize the clump size distribution and to investigate the morphology and dynamics of the interface between the ionized interior layer of the CND and the molecular reservoir lying farther out (corresponding to the inner rim of the CND, illuminated in ultraviolet light by the central star cluster). Methods.We have observed two fields of approximately 20″ × 20″ in the CND at near-infrared wavelengths with the OSIRIS spectro-imager at the Keck Observatory. These two fields, located at the approaching and receding nodes of the CND, best display this interface. Our data cover two H2lines as well as the Brγline (tracing H II). We have developed the tool CubeFit, an original method for extracting maps of continuous physical parameters (such as the velocity field and velocity dispersion) from integral-field spectroscopy data, using regularization to largely preserve spatial resolution in regions of low signal-to-noise ratio. Results.This original method enables us to isolate compact, bright features in the interstellar medium of the CND. Several clumps in the southwestern field assume the appearance of filaments, many of which are parallel to one another. We conclude that these clumps cannot be self-gravitating.more » « less
- 
            Abstract We present new absolute proper-motion measurements for the Arches and Quintuplet clusters, two young massive star clusters near the Galactic center. Using multiepoch HST observations, we construct proper-motion catalogs for the Arches (∼35,000 stars) and Quintuplet (∼40,000 stars) fields in ICRF coordinates established using stars in common with the Gaia EDR3 catalog. The bulk proper motions of the clusters are measured to be (μα*,μδ) = (−0.80 ± 0.032, −1.89 ± 0.021) mas yr−1for the Arches and (μα*,μδ) = (−0.96 ± 0.032, −2.29 ± 0.023) mas yr−1for the Quintuplet, achieving ≳5× higher precision than past measurements. We place the first constraints on the properties of the cluster orbits that incorporate the uncertainty in their current line-of-sight distances. The clusters will not approach closer than ∼25 pc to Sgr A*, making it unlikely that they will inspiral into the nuclear star cluster within their lifetime. Further, the cluster orbits are not consistent with being circular; the average value ofrapo/rperiis ∼1.9 (equivalent to an eccentricity of ∼0.31) for both clusters. Lastly, we find that the clusters do not share a common orbit, challenging one proposed formation scenario in which the clusters formed from molecular clouds on the open stream orbit derived by Kruijssen et al. Meanwhile, our constraints on the birth location and velocity of the clusters offer mild support for a scenario in which the clusters formed via collisions between gas clouds on thex1andx2bar orbit families.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
